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1 | INTRODUCTION

Nanoscale optics is usually associated with plasmonic resonant structures made of metals such as gold or silver. Plas-
monic resonances of nanoparticles can be treated as an eigenvalue problem for the Neumann-Poincaré operator (see
previous studies!#). However, plasmonic structures suffer from high losses inherent in metals and dissipation due to
heating. Recent developments in nanoscale optical physics have led to a new branch of nanophotonics focused on the
manipulation of optically induced subwavelength resonances in dielectric nanoparticles with high refractive indices.>”
Resonant high-index dielectric nanostructures form new building blocks, which can be used to realize unique func-
tionalities and novel photonic devices.’ Their study has been established as a new research direction in nanophotonics.
Nevertheless, despite strong experimental efforts, mathematical modeling of resonant high-index nanoparticles remains
limited. Apart from the case where the particles are disks or spheres, their subwavelength resonant frequencies have not
been characterized yet.

In this paper, we consider a dielectric high-index nanoparticle of arbitrary shape and characterize its subwavelength
resonances in terms of the eigenvalues of the Newtonian potential associated with its shape. Our formula is closely related
to the one established in Meklachi et al.® Then, we provide an asymptotic formula for the field scattered by a dielectric
nanoparticle and estimate the scattering enhancement near its resonant frequencies. We also consider the hybridization
phenomenon of a dimer consisting of high refractive index dielectric nanoparticles. We derive asymptotic formulas for
the hybridized resonant frequencies, which correspond to monopole and dipole modes.

For simplicity of presentation, we consider the Helmholtz equation as a model for the wave propagation. But one should
emphasize that the approach developed here can be extended to the full Maxwell's equations. On the other hand, based on
the asymptotic formula for the scattered field derived in this paper, one can characterize the temporal response of resonant
dielectric nanoparticles and obtain a time-domain resonant-mode-expansion for the scattered field, which generalizes
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the time-domain asymptotic formula proved in Ammari et al® to the case of a resonant subwavelength particle. This can
be easily done by reproducing the calculations presented in Ammari and Zhang, 10(appendix B)

Our results in this paper provide a solid mathematical framework for the analysis of resonant dielectric nanoparti-
cles. They make possible the direct calculation of resonant frequencies and the optimal design of dielectric nanoparticles
that resonate at specified frequencies. They can also be applied in the design of dielectric metamaterials and are
expected to advance the applications described in previous studies,®”!! in particular, those concerned with metasurfaces,
double-negative all dielectric materials, super-focusing, and wavefront control at the deep subwavelength scale.

2 | RESONANT FREQUENCIES OF DIELECTRIC NANOPARTICLES WITH
HIGH REFRACTIVE INDICES

LetD € RY, ford = 2,3,be a particle of the form D = z + 6B, where § is its characteristic size, z its location, and B is a
smooth bounded domain containing the origin. Let w denote the frequency, let € = re, + €5, inside D and € = ¢, outside
D. Here, ., £, and 7 are positive constants. Let E™ be an incident plane wave with frequency w.

Consider the Helmholtz equation

(A+@*¢)E=0 in RY,
E — E™ satisfies the Sommerfeld radiation condition.

From

(A + @*em)(E — E™) = —w?te.Elp in RY,
wherelp is the characteristic function of D, it follows that the following Lippmann-Schwinger representation formula
holds:

(E-E™(x) = —a)zrec/E(y)Fm(x —y;w)dy for x € RY, (D)
D
where I, is the outgoing (ie, subject to the Sommerfeld radiation condition) fundamental solution of A + &,,w? in free
space.
Let k,,, = w+/en. Let the volume integral operator K]l;’” be defined by

K i EeL*(D)r — / E()m(x — y; w)dy € L*(D).
D

Itis well known that, due to the weak singularity of the fundamental solution, K]I;"‘ is compact. When the norm of Ta)zeCKII;’”

is smaller than 1, I — Ta)zecK]I;'" is invertible, so (3) can be rewritten as

E(x) = (I — t0’e Ky [E™](x) forall x €D, ©)

where I denotes the identity operator.

Assume that the characteristic size 6 of the particle D is much smaller than the wavelength 2z /k,,). The subwavelength
resonance problem is then to find an w € C close to 0 such that (I — TCOZECKEW')_I is singular, or equivalently, such that
there exists L?(D) = E £ 0 with

E(x) + a)ZTsC/E(y)Fm(x —y,w)dy =0, for xeD, 3)
D

see Ammari and Zhang!? Such an ® would be a subwavelength resonance for the high refractive index dielectric
particle D.
Through a Taylor series expansion of the fundamental solution, we obtain the following result.

Lemma 2.1. Letd = 3. Let Kg) ) be the Newtonian potential on D, ie, the operator defined by

KO[E](x) = - / EG)Te— y)dy for x €D,
D
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with T'(x) being the fundamental solution of the Laplacian in R3. The operator K]’;”‘ can be rewritten as
N o
Ky =) ok, 4)
i=0

where the series converges in operator norm if w is small enough.

LetA; = rcozech). By expanding with a Neumann series, we have

o -1 o -1
<1 —Ap— ZwiAi> = (1 —(I=Ay)! ZwiAi> (I - Ay)!
i=1 i=1
(o] (o] k
=y ((I - Ao)—lzwiAi> (I — Ag)™
k=0 i=1

=T -A) +UT-A) 'wA 1T — AL + O(@). 5)

Recall that K](JO) : L>(D) — L?*(D) is a compact, self-adjoint operator. Let, for the sake of clarity of the presentation, Ag
be a simple eigenvalue of Kg)) associated with the normalized eigenfunction ¢, in L?(D). We remark that the eigenvalues
of K](JO) are positive. For the analysis of the spectrum of the Newtonian potential, we refer the reader, for instance, to
Kalmenov and Suragan.!3

Let wg be a frequency at which I — Ay becomes singular. In particular, let

wo = 1/ 1ecAp. (6)

Note that wy is small only for 7 large enough. This shows that subwavelength resonances occur only for particles with
high refractive indices.
For w near wy, we have, by a pole-pencil operator decomposition, that

(- a0 w1 = PP gy,
— Tw?e Ao

where o — R(w) is analytic in a neighborhood of wy and (-, - ) denotes the scalar product on L?(D). Hence, considering
only the first two terms in the expansion (5), we obtain from (2) that an approximation of the resonance must satisfy (see,
for instance, Ammari et al'*1%):

o . (K5 [dol. do)

+TtweE,—mmmm — = L.
‘(1= twte i) "

Therefore, we have the following approximation for the subwavelength resonances.

1 — tw?e A

Proposition 2.2. Letd = 3 and let t be large enough. Let w, be defined by (6), where A is an eigenvalue of the Newtonian
potential K](JO). Then, the O(w*) approximation of the subwavelength resonant frequencies wy of the dielectric particle D
satisfies

1 - twlechdo = —twie (K} [dol. do).
Note that, in three dimensions,
VEm

K[l = —i T

T

/ ¢dy forall ¢ € L*(D).
D

Therefore, wg satisfies

it
1- rwgeclo = Ewi\/emec(/qbody)z.
D
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Since s is close to g, by approximating w? ~ a) and since by definition re.4o = 1/w¢, we obtain

2
N / Body)

[=) S}

Corollary 2.3. Let d = 3. Then, the O(w*) approximation of the subwavelength resonant frequencies of the dielectric
particle D can be computed as

w5 (uo———\/a(/dh)d)’)z

By using the Lippmann-Schwinger representation formula (3), we can also rewrite

<Em bo)([pbo) (K [dol. do)(E™, dho)( Jp$o)
O)—— + Tw

£
¢ (1 — Tw?ecAp)?

E(x) — E"(X) ~ —w*te[m(x — 2,
1 — tw?ec A

By plugging the expression of ws obtained in Proposition 2.2 into the above approximation of the scattered field, we arrive
at the following result.

Proposition 2.4. For w (real) near the resonant frequency ws and E™ such that (E™, ¢) 12y # 0, the following monopole
approximation of the dielectric nanoparticle D holds:

| Jo (% -1) =2 (fog0? (0= 2)
E(x) - E"(x) ~ — (E™, o) 2oy ['m(x — 23 @), @)

(o (% -1) - 12 por %)

for |x — z| > 27 /(w+/em)-

Now, we turn to the two-dimensional case. In this case, the problem is complicated by the logarithmic singularity of
the operator KI];’” as w — 0 which gives rise to an averaging operator at leading order when asymptotically expanded. This
means we cannot expect to frame the resonance frequency in terms of a single eigenvalue of the Newtonian potential.
Instead, in two dimensions, the resonance frequency takes account of an infinite number of eigenvalues of the Newtonian
potential.

From the asymptotic expansion of the Hankel function H(()D of the first kind of order zero:

H(s) = 212(— )’"zzm(m B <log(?s>— Z%)

j=1

where 2§ = exp(y — iz /2) with y being the Euler's constant (see, for instance, Ammari and Nédélec'®), it follows that
Ko [E) = —%(mg(w\/ay)) /D E®dy+KY +(@’logw) as @ — 0, (8)
where K](JO) is the Newtonian potential in dimension two, that is, the operator defined on L?(D) by
KVEIx) = / EW)I(x—y)dy for xeD,
D

with I" being the fundamental solution of the Laplacian in R2.
Expanding Kg’” asin (5) and following the same calculations, we obtain the following characterization of subwavelength
resonant frequencies in the two-dimensional case (see Appendix A).
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Proposition 2.5. Let d = 2 and t large enough. Then, the o(w?) approximation of the subwavelength resonant

frequencies ws of the dielectric particle D satisfies
> |D| N O 13 ) =
1-wsrec | - P log(wsy V Em) + <KD [1p], Tp) ) =0,

where |D| is the volume of D and ip= 1p/+/IDI.

3 | HYBRIDIZATION OF SUBWAVELENGTH RESONANT FREQUENCIES
FOR A DIMER OF DIELECTRIC NANOPARTICLES

Consider a dimer of two identical particles D; and D, with the same dielectric parameter as in the above section. Then
the field E — E™™ scattered by the two particles has the following representation formula:

(E — E™)(x) = —w’7e, ( /
D

Define the operators Kzl;:" and R;’:"Dj fori,j=1,2,by

EpIyu(x -y, 0)dy + /

EWp(x — y; 0)d y) for x € RY. 9)
D2

1

i

K
K"t Elp, € L*(Dy) —/ E()m(x — y; w)dylp, € L*(Dy),
D,

i

and

k
Ry, t Elp, € L*(Dy) —/ E()m(x — y; @)dylp, € L*(D;).
i Di

Then, from (9), we obtain the following system of operator equations:

k k
1 - tw?e.K," —tw?e R i
Dy ¢'D,.D, <E|D1> _ <E_m|D1 > (10)
k k. - n .
—t0’e R 1 —tw’e K" Elp, E®|p,.
12 2

The scattering resonance problem is to find  such that the operator in (10) is singular, or equivalently such that there
exists L2(D;) x L*(D,) o (E1, E,) # (0, 0) such that

_ 2 ki _ 2 K
l1—-Tw 6CKD1 TW &CRDZ‘D1 <E|D1 > _ <O> ’ an

2 Kin 2 Lo ElD 0
—Tw e.R 1—tw°e.K 2
¢p,.D, ¢™p,

Note that here we have a coupled system of subwavelength resonators. As in Ammari et al,'*'” the following results hold.

Proposition 3.1. Let d = 3. The subwavelength resonant frequency w; is hybridized into two subwavelength resonant
frequencies wF approximately given by

1
WF = w0 = sopecy[ (R, 801 80 Rp 100 441, (12)

where q’>g), fori=1,2, is the eigenfunction associated to the eigenvalue A of the Newtonian potential of D;. Moreover, in

the far-field, the dimer of dielectric particles behaves as the sum of a monopole and a dipole.

Now, let d = 2 and consider for simplicity a dimer of two identical disks D; and D, with the same dielectric parameters
as in the above section.
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Define the operators Kf)'_" and R;'f‘ n fori,j=1,2,by
i i

Ky :Elp, € L*(Dy) ~ - / E()Tk, (x = y)dylp, € LADy),
D.

i

R,IS"I_ﬂD_ :E|p, € L*(Dy) ~ —/ E()T, (x = y)dylp, € L*(D)).
J D.

i

Define the operators M]];’_" and NE’_”D fori,j=1,2,by
i i~y

Ky \ _ prkm (0)
My =Ry +Kp),
Ky o _ ki (0)
Ny =Ky +RY)

where

KY :E|p € LDy - / E()(x - y)dylp, € LA(Dy),

i D.

i

" :E|p, € L*(Dy) v~ log(7km)Kp [Ellp, € L*(Dy),

1
Kp, :Elp, € L*(Dy) ~ —g/E(Y)dle,. € L*(Dy),
Di

R’ :E|p, € L*(D) /D E(I(x - y)lp, € LA(D)),
Ky, :Elp, € L*(Dy) v log(?km)Kp, [El|p, € L*(D)),

1
Kp.p, :Elp, € L*(Dy) — —Z/E(y)dybj € L*(D)).
D;

We refer to Appendix C for the proof of the following proposition.

Proposition 3.2. Let d = 2 and 7 large enough. Then the monopole and dipole hybridized resonances of the dimer of
two identical disks D; and D, of radius & are approximately given by

2. . N
| <—? log(wy+/em)(1 £ 1) + (K(Dol)[ﬂbllﬂnl) + <R§§2),DI[HD2], 1]D1>> =0.

The following corollary gives more explicit formulae for the hybridized resonances in the case when D; and D, are unit
disks.

Corollary 3.3. Let d = 2 and t large enough. Then the monopole and dipole hybridized resonances of a dimer of two
identical unit disks D; and D, are given by

o) = VH
" TeW(@(0)

V2

wq(r) = ,
ree (3 - HR), 15,1 10,))

where 5 L o
— 5 (0)
() =~ exp (2log(Ve?) ~ 7 = Z(RY), 11,1 10,)).

and W is the lower branch of the Lambert W function defined in the interval [—1/e, 0).
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107! + | ws, rerl
— |ws
| wm, refl
— |wml
+ o |wa,ref|

— wdl
O(1/y/ Tlog(1))
O(INT)

102

FIGURE1 The asymptotic resonances ws
(single particle), w,, (monopole), and wq (dipole)
given by the formulas in Propositions B.1 and

10-3 Corollary 3.3 and the corresponding resonances

102 103 10* 105 obtained using reference solutions [Colour
T figure can be viewed at wileyonlinelibrary.com]

T Re(Wsrer) Re(w;) IM(g ref) Im(w,) Relative Error TABLE1 The real and imaginary parts of ws and

23 28012e—01 2.8043e—01 1.4476e—01 1.4022e—01 1.44e— 02 s rer along with the relative error for = € {2/}]_,
2 1.9685¢—01 1.964% —01 8.4484c—01 8.3198¢—01 6.23¢ — 03
25 1.3602e—01 1.3581e—01 4.9465¢ —01 4.918% —01 2.40e — 03
26 93188¢—02 9.3111e—02 2.9242¢—02 2.922le—02 8.22¢ —04
27 636060 —02 63587¢—02 1.7497¢ —02 1.7521e—02 4.68¢ — 04

Remark 1. Note that as ¢ — oo the monopole resonance wy, = O(1/4/7log(zr)) and hence it decays at the same rate
as the single particle resonance wg; however, the dipole resonance wq decays slightly slower, ie, as O(1/ \/?).

4 | NUMERICAL ILLUSTRATIONS

Let €,, = €. = 1. Let D, Dy, and D, be unit disks with D centered at the origin, D, centered at (—2,0), and D, centered at
(2,0) with D being the geometry for the single particle problem (3) and D; U D, being the geometry for the dimer problem
(11).

The asymptotic resonances ws, wm, and wq are given by the formulas in Proposition B.1 and Corollary 3.3, with the
<Rg)z),D1[ﬂ p,1, 1p,) term in the hybridized resonances computed numerically using Python's nquad routine after first
putting it in polar coordinates with respect to the center of D;. We numerically compute reference solutions to the sin-
gle particle problem and the dimer problem using boundary integral equation formulations expanded on multipole bases
to obtain reference resonances ws s (single particle), @my ref (monopole), and wq s (dipole). In Figure 1, we plot the
asymptotic resonances along with the corresponding reference resonances and predicted rates of convergence.

In Table 1, we give values of ws and ws er and their corresponding relative errors for r € {2/ },7-:3-

5 | CONCLUDING REMARKS

In this paper, we have provided the first mathematical model of resonant high-index dielectric nanoparticles. We have
characterized their subwavelength resonances in terms of the eigenvalues of the associated Newtonian potential. We have
also discussed the hybridization phenomenon of a dimer of dielectric nanoparticles with high refractive indices. Our
results in this paper pave the way for the analysis, design, and manipulation of resonant dielectric nanostructures and
their use as metamaterials. In particular, they can be used for mathematically and numerically modeling super-focusing in
dielectric nanostructures, double-negative dielectric materials, and dielectric metasurfaces. Moreover, following previous
studies,”!? formula (7) can be easily generalized to the time-domain in order to characterize the temporal response of res-
onant dielectric nanoparticles and accelerate computations involving the temporal responses of subwavelength dielectric
resonators.
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APPENDIX A: PROOF OF PROPOSITION 2.5

Expansion (8) can be rewritten as

k, ~k
Ky =K+ KY + 0(0? log(w)),
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where

K5 (E] = log(7km)KplEL,

RplE] = —% / E()dy,
D

K(E) = / E())I(x— y)dy = —% / E(y)log| - —yldy.
D D

Using this expansion, the resonance problem of finding @ € C such that there exists a solution L*(D) 3 E # 0 to (3)
becomes
(I - o reRy + KY)IEIX) = O(w* log()).
Denote by
My =K+ K,
which is self-adjoint as it is the sum of bounded self-adjoint operators.

Note that when )

AV, T£C/lo

where Ay belongs to a(Kg))), the spectrum of Kg)), the following equation has a nontrivial solution:

w =

s

(I - o*re KY)E] = 0.

Analogously, when

w=—1 (A1)

\/TSC\/((»O)’
where v(w) € G(M]I;m) the following equation, which is an approximation of our resonance problem up to order
O(w* log(w)), has a nontrivial solution:
(I - w*re.M)IE] = 0. (A2)

Consider the eigenvalue problem for Mﬁ"‘:
ME[¥] = v(@)¥,

where ¥ = ¥(w) is normalized on L*(D). Using the expansions

‘I‘(a)):‘P0+O<—1 )9

log w

v(w) = log(w)vy +v1 + O <;> ,
log w

we have

(log(@)Rp +10g(7 \/em)Rp + K)ol = (log(@)vo + vi)[¥ol + O <@) .

Equating terms of O(log(w)) gives
Kp[¥ol = vo'Po.

AsKpis independent of x € D, ¥, must be a constant function, which we normalize on L*(D), ie, ¥y = 1 D.
This gives
~ ” A D]
volp =Kp[lp] = —uﬂD,
27

s0 vo = —|D|/(2x). Next, equating terms of O(1), we have

vilp = (log(?1/emRp + K[ 1p]
D . . .
= —'2—' log(7v/em)1p + K[ p],

T
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and so, after taking the inner product with 1p, we get

|D|

v == log(/em) + (Ky [1], Ip).
This means that
v(@) = — 2 log(ikn) + (KTip], ip) + 0 (2 ). (A3)
2 b ’ log
Using the expansion of v(®) in (A3), we obtain from (A1) that
1 - wlre. _1ol log(wsf\/em) + (KO[1p],1p) ) =0 @\ _ o(?). (A4)
s 2n b ’ logw

APPENDIX B: THE RESONANCE FOR A UNIT DISK

Let D be the unit disk. We can obtain a fully explicit expression for (A4) in this case as the eigenvalues of the Newtonian
potential have a direct relationship with the zeros of the Bessel function of order zero.!? First, we note that (K](JO)[H pl, 1p) =

1/ ﬂ(Kg) ) [1p], 1p). Now, let J; be the Bessel function of order [ and define ;4;0) by
Jo(yj,o)) =0, j=1,2, ...

According to Kalmenov and Suragan,'? the eigenvalues of the Newtonian potential for the unit disk are given by

1

(0))2 ’

= i=12 ...,
(u;

0j

with the associated orthornormal set of eigenfunctions {e; ¥ given by

e;(r) = B;Jo <H;-0)7') ,

where
p, = 1
= T =
Vanh(u?)
Note that 4
(Ip,e;) = ——.
;)

Then we have

o

(Kp [l 1p) = > (1p.¢))* Aoy = 47 ) ——
j=1 j=1 (ﬂj )
o 1 b4
=47 ==,
,21 (uy 8
where we used the identity 372, 1/ (;4;0))4 =1/32.18
Therefore,
A a 1
(Kp'inl Tn) = ¢
and (A4) can be written as
2
1- % (— log(7knm) + }‘) = o(a?). (B5)

The precise dependence of @ on the contrast parameter = can be found by writing the solution to (B5) in terms of the
Lambert W function.!®

85U8017 SUOWILLOD 3ATE81D 3(dedl|dde sy} Aq peusenob a1e ss(ie YO ‘8sn JO's9|nl 1o} AriqiT8uljuQ A1\ UO (SUONIPUCD-PUR-SLLIBYLIOD S| 1M AlRIq 1 BU1UO//SANY) SUORIPUOD PUe SWB | 8L 88S *[£202/70/yT] Uo ArIgITauliuO A8|IM ‘Yoo ISIed 1DdST Ad 09,5 BUIL/ZO0T OT/10p/uoo" A3 1M Akeid iUl uo//sdny wouy pepeojumod ‘8T ‘6T0Z ‘9/7T660T



AMMARI ET AL. Wl LEY 6577
Proposition B.1. The resonance for a unit disk as the contrast t — oo is given by
a)s(r)=—#+o<;>, (B6)
T W(D(7)) 7 log(z)

where 4 1
D(r) = e exp (210g(\/6my) - 5) ,
and W is the lower branch of the Lambert W function defined in the interval [—1/e, 0).

Proof. Denote by

TE,
2

@(0) 1= ao (log(y/En) - i)
a(7) := _2 exp <ﬁ> .

@ @0

ap(t) 1=

)

Then we can write (B5) as
1 + a0’ log(w) + a0* = o(w)?,
which leads to

242 2
~2log() = ZE2UL L o),
Ao
Then i
242
i = exp ﬂ + 0(1).
w? apw?
Next, we have
— 2
2 exp | — 2 \=_2 exp ), o(exp(—=1/w?)).
apw? apw? Loy o

The Lambert W function is a map ze* — W(ze?) = z!° and as the expression above is in this form, an application of

this map leads to
_22 =W <£ exp <—%>> +o(1)
Ao do (L1

= W(a) + o(1).

Note that the Lambert W function is double valued in the interval [—1/e, 0), which is the interval we need to con-
sider when 7 — oo, and we should choose the lower branch, denoted by W_; in the literature, to obtain a physically
meaningful resonance.

Now 5
2 2
= ——=— +o(),
aoW(az)
and so
ivV2
w= iL + o(@?). (B7)

VaoW(az)

Noting that a, = O(1/7), as T — oo we have the expansion!®

log(—log(—a,))

W(ay) = log(—az) — log(—log(—a»)) + Tog(—a2)

which implies that W(a,) = O(log(z)). As ag = O(z) this means we have

w+o0@) =0 —— ).
v/ 7 log(r)
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and squaring both sides gives

2 3N _ 1
[ +O(a))_o<rlog(1)>'

Thus, upon taking the term with positive real part in (B7), we obtain (B6). O

A coarser approximation which gives a clearer qualitative indication of the dependence of the resonance frequency on
the system variables is given in the following corollary.

Corollary B.2. Ast — oo it holds that

o211
Teclog(r) @(7) v/ log(r)
where

log(==§?) + 3

o) =1~ 2log(7)

Proof. We have

W(ay) = log(—ag) + ...

= —log(z) + log (e—m?2> + 1,

£ 2
Then

lo (i—’”fﬂ) + %

Wi =14/-1 52 1- -
VWi(ar) = y/—log(z8?) D)
log (“'—%72) +3
=i/l 1- e
tylog(r) 2log(r)

Substituting this expression for 1/ W(a,) into (B6) asserts the claim. O

APPENDIX C: PROOF OF PROPOSITION 3.2

We have |D;| = |D,| = #62. Since

k, k,
KD’:’ = MD'i" + O(@* log(w)),
k k
Ry =Np'p + O(w? log(w)),
it holds that
k k,
[=rareMy —tarecNy, < E|p, > - < O(w* log(®)) ) 1)
—Ta)zechl;'iDz I- Ta)zecMg"Z’ Elp, O(w* log(w))
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Denote by

o 8 N Ao a
¥(@) =~ log(7km) + (K}, 11,1, 1p,)
& . P
= == log(k) + (K} 11,1, 1p,),
i@ = (N, [1n,1,1p,)
= (N, [0p,1, ),
with these equalities holding due to the symmetry of the dimer. Furthermore, the symmetry of the dimer also means that

Ry (101 = Ry ([1p, 1. (C2)

Jj

Denote by v(w) the eigenvalues of the operators Mg_" such that
(M [¥p,1, Wp,) = V(@) = (My"[¥p,], ¥p,),

for eigenfunctions L*(D;) © ¥p,(w) = ¥p,o + O( @) = ﬁD,. +0(=).

log w

From Appendix A, we know that
(M [¥p,], ¥p,) = V(@) = 0(@) + o(1). (C3)

Denote by n(w) = (N]I;f'iDv [¥p,], ‘PDJ ). Note also that
n(w) = (@) + o(1).

Therefore, we have the following implicit equation for the hybridized resonances,

52 X A oa A a
1 - wre, <—? log(@f\/em)(1 £ 1) + (Klg"l)[ﬂDl]ﬂm) + <Rg’jle[ﬂD2], ip, >> = o(w?).

85U8017 SUOWILLOD 3ATE81D 3(dedl|dde sy} Aq peusenob a1e ss(ie YO ‘8sn JO's9|nl 1o} AriqiT8uljuQ A1\ UO (SUONIPUCD-PUR-SLLIBYLIOD S| 1M AlRIq 1 BU1UO//SANY) SUORIPUOD PUe SWB | 8L 88S *[£202/70/yT] Uo ArIgITauliuO A8|IM ‘Yoo ISIed 1DdST Ad 09,5 BUIL/ZO0T OT/10p/uoo" A3 1M Akeid iUl uo//sdny wouy pepeojumod ‘8T ‘6T0Z ‘9/7T660T



	Subwavelength resonant dielectric nanoparticles with high refractive indices
	Abstract
	INTRODUCTION
	RESONANT FREQUENCIES OF DIELECTRIC NANOPARTICLES WITH HIGH REFRACTIVE INDICES
	HYBRIDIZATION OF SUBWAVELENGTH RESONANT FREQUENCIES FOR A DIMER OF DIELECTRIC NANOPARTICLES
	NUMERICAL ILLUSTRATIONS
	CONCLUDING REMARKS
	CONFLICT OF INTEREST
	References
	APPENDIX A : PROOF OF PROPOSITION 2.5
	APPENDIX B : THE RESONANCE FOR A UNIT DISK
	APPENDIX C : PROOF OF PROPOSITION 3.2


